Γ.	CABLE I. Measure	d isotropic elastic	moduli of p	olycrystalline MgO	, CaF_2 , β -ZnS,	ZnSe, and CdTe.	
----	------------------	---------------------	-------------	--------------------	---------------------------	-----------------	--

	Density (g/cm³)	Elastic modulus ^a			
Specimen		Young's	Shear	Longitudinal	Method of measurements
IR-MgO	$3.5819(\pm 0.0009)$	$30.72(\pm 0.12)$	$12.93(\pm 0.10)$		Resonance
		••••	$12.90(\pm 0.03)$	$33.83(\pm 0.03)$	Pulse superposition
IR-CaF ₂	$3.1792(\pm 0.0008)$	$10.75(\pm 0.09)$	$4.07(\pm 0.07)$		Resonance
			$4.11(\pm 0.03)$	$14.87(\pm 0.03)$	Pulse superposition
IR-ZnS	$4.0791(\pm 0.0009)$	$8.38(\pm 0.09)$	$3.18(\pm 0.07)$		Resonance
			$3.17(\pm 0.03)$	$11.98(\pm 0.03)$	Pulse superposition
IR-ZnSe	$5.2664(\pm 0.0009)$	$7.46(\pm 0.10)$	$2.81(\pm 0.07)$		Resonance
			$2.89(\pm 0.03)$	$9.83(\pm 0.03)$	Pulse superposition
IR-CdTe	$5.8520(\pm 0.0008)$		$1.40(\pm 0.05)$	$6.07(\pm 0.06)$	Phase comparison
			$1.38(\pm 0.03)$	$6.08(\pm 0.03)$	Pulse superposition

^a All values are at 298°K. All moduli are in units of 10¹¹ dyn/cm².

IR-CaF₂ was $3.1792 ~(\pm 0.0008) ~g/cm^3$ at 298°K, and this value compares well with an x-ray density of 3.179 g/cm3 at 298°K. The chemical purity of the specimen was 99.92% CaF2, and a spectrochemical analysis showed the following impurities: Sr 700, Na 50, Mg 20, Si 3, and Mn 2 ppm with trances of Al, Ba, K, and Li. The IR-CaF₂ was highly translucent in the visible region as in the case of IR-MgO and it had the optical properties corresponding to a single-crystal CaF2.

C. Polycrystalline β -ZnS

The β -ZnS specimen used in the present program is a typical of Irtran No. 2 material. The measured density was 4.0791 (± 0.0009) g/cm³ at 298°K, and this should be compared with a x-ray density of 4.088 g/cm³ at the same temperature. The specimen has been referred to as IR-ZnS in the text, and it has a chemical purity of 99.997% ZnS. Among the impurities detected were Si 1 and Pb 1 ppm with traces of Cu, Fe, and Mg. X-ray diffraction patterns indicate the IR-ZnS was composed primarily of β -ZnS (i.e., sphalerite).

D. Polycrystalline Zn Se

One specimen of polycrystalline ZnSe used in the present program is a typical Irtran No. 4 material, and this has been designated as IR-ZnSe. The IR-ZnSe had the bulk density of 5.2664 (± 0.0009) g/cm³ at 298°K and this value compares well with 5.267 gm/cm³, the x-ray density at the same temperature. This specimen has a chemical purity of 99.995% ZnSe, with minor constituents including Mg 5, Cu 3, B 10, and Al 2 ppm and traces of Cr and Ni. The IR-ZnSe was translucent in the visible region and had the optical properties similar to single-crystal ZnSe.

E. Polycrystalline CdTe

One specimen referred hereafter to as IR-CdTe is a typical of Irtran No. 6 material. The measured density was 5.8520 (± 0.0008) g/cm³ at 298°K and this may be compared with 5.854 gm/cm3 calculated from the lattice constant7 of 6.5815 Å at 298°K. The chemical purity of the specimen was 99.98% CdTe and the specimen contained the following impurities: B 10, Si 10, Mg 3 ppm and traces of Al, Ag, and Cu.

2.2. Measurements of Isotropic Elastic Moduli

The present work utilizes primarily a modified Förster-type resonance method in the kilocycle range⁸ to determine the isotropic shear modulus and then Young's modulus of a bar-shaped polycrystalline specimen. Two ultrasonic methods⁹ (phase-comparison and pulse-superposition techniques due to McSkimin) often used in single-crystal measurements are also used, as complementary methods, for determining the elastic parameters of polycrystalline solids under investigation. Since a detailed description on all of these methods are found in the literature, this description is not reproduced here.

3. EXPERIMENTAL RESULTS

Table I lists the measured elastic moduli for all the polycrystalline specimens considered in the present work. For a given material, two sets of isotropic elastic moduli are entered. One set is the result obtained from the resonance method in the audio-frequency range and

CaF2 CaF2 CaF2 CaF2 CaF_2 B-ZnS B-ZnS B-ZnS B-ZnS B-ZnS B-ZnS ZnSe CdTe CdTe a Values of the orig represent 36D1: ° 61S1: 0 d 63C1: 46, 452 (196 65B1: 1 65C1: # 28V1: V h 58S1: 1 i 60H1: 1

the othe

in the

dampin

were no

ured by

parison

from th

moduli.

the shea

combine indicate

determi

the gene

the ultra

4. SINC

For n than one

in the lit

Mat reference

> MgO MgO MgO MgO MgO MgO

2536

⁷ P. W. Davis and T. S. Shilliday, Phys. Rev. 118, 1020 (1960).
⁸ S. Spinner and W. E. Teñt, Proc. ASTM 61, 1221 (1961).
⁹ H. J. McSkimin, *Physical Acoustics* W. P. Mason, Ed. (Academic Press Inc., New York, 1964), Vol. I-A, Chap. 4.